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111, TWOITANGENT SPACE FORMALISM: NOT ALL INDICES ARE CREATED EQUAL

1. Introduction
In Sections I.2 and 11.5, I argued for the introduction into

) , o, s
general relativity of an independent full comnection, T s in addition

By

to the Christeffel connection, {a }. The Christoffel connection is metric—

By

compatible and torsion-free, while depending on the theory, the full

connection may be non-metric-compatible and/or non-torsion-free. The

difference between the connections,

is the defect'tensér.

Again depending on the theory, the gauge group;-G, of the full
connection can be any one of the groupsjliéted in Tables II.2 and II1.4
(or aﬁother group not listed). Thus if the frame field is chosen from the
corresponding class of frames (listed in Tables II.1 and II.3) then the
connection coefficients také their wvalues in the Lie algebra of the gauge
group as listed in Table TI.5.

In such theories with an independent connection, it is often convenient

_to express the Bianchi identities, conservation laws and field equations

using "mixed" covariant derivatives such as

B g 'i-lﬂ tAB + {B" } tA'lJ .
Y o Y o ey U HY o

These are "mixed" because some indices (those with a caret, *,) are corrected

with the full connection, while other indices (those with a tilde, ~,) are

corrected with the Christoffel connection. Of course, it is always possible
to usze only full connections or only Christoffel connections, but then the

equations contain unaesthetic defect tensors.
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This chapter presents a formalism ﬁhich makes rigorous the concepts
of two types of indices and.mixed covariant derivatives. This is
accoméliéhed by introducing two . .isomorphic copies of the tangent bundle
(distinguished as internal and external) each with its owm connection.

The external tangent buﬁdle, TM, is the usual tangent bundle with the
Christoffel commection. Its bundle structure is defined using coordinate
bases butlarbitragy frame fields are admissible.

The internal tangent buﬁdle, %M, is an abstract 4-dimensional wvector
bundle associated, by some representationq’RT; to some principle G-bundle,
P, with a G—connection. {(Here, G could be one of the groups listed in
Tables IT.2 and II.4.) Its bundle structure is defined using frame fields
which are compatible with the group G in that the bundle of G-compatible
fraﬁes is a principalR&(G)‘bundle associated to P. (For each G, the class

of G-compatible frames and the G-compatible frame bundle are listed in

" Tables II.1 and II.3.)

In Section 2,1 discuss the two tangent -spaces, their frame fields and
connections and the isomorphism between thgm. The covariant derivaﬁive of
this isomorphism turns out to be tﬁe defect tensor. If there is a metric
6n both tangent.spaces, then the isomorphism is required to be an isometry.
(Note that a bimetric theory of gravity céuld easily be incorporated into
this_formalisﬁ by not requiring the isomorphism to be anrisometry.)

In sectioﬁ 3, 1 compare the two tangent space formalism with the
standard one tangent space formalism -in both the index notation and the
Cartan differential form notation. In section 4, I discuss_minimal
coupling of the matter Lagrangian and the reiatéd question of which
indices are internal or external. This choice is the same as that made
in the Cartan form notation between visible and invisible indices. The
invisible form indices become external while the visible tensor indices

become internal. Thus most matter fields are assumed to be cross sections

r
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of internal tangent tensor bundles. However, gauge fields are Lie

algebra valued external 1-forms and differentiations are standardly

pefformed in extgrnal vector directions.

In section 5, I give an example of a computation using the two
tangent space formalism by deriving energy;mOmentum and angular
momentuﬁ congervation iaws via Noether's theorem. I &erive the con-

servation laws when the internal tangent gauge group is GL,(4,R) and -

{0.(3,1,R), but it is obvious that a similar derivation could be dome

for any tangent gauge group. In the GL,(4,R) case T also obtain com-
servation laws for hypermomentum and dilation current. Section 5 also
serves to establish terminology for later chapters.

Throughout this chapter, it is useful to keep in mind the relation-

o
1

as discussed in Section II.3 I regard that relationship to be a special

ship'between the spinor bundle, ngMﬁerm; and the vector bundle, T M,

case of the relationship between TM and TM discussed in this chapter.
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2. Two Tangent Space Formalism
. * - ) N
Let ™M, T M, and TSM be the tangent bundle, cotangent bundle’

: - %
and various tensor bundles over a spacetime M. Hereafter, ™, T M and

TgM will be referred to as the external tangent bundle, external cotangent

bundle and external tangent tensor bundles. Their elements are external

tangeut'vectors, external tangent covectors and external tangent tensors,:

which carry external tangent indices.

Let G be a Lie group which has a 4-dimensional real representation RT;

(Some interesting groups G are listed in Tables II.2 and II.4.) Let P be a

principal fibre bundle over M with gauge group G. (Tables-II.1 and II.3
list a frame bundle P for each group G.) Let %M be the R4 vector bundle
over M associated to P by ﬁhe representation RT. Let T M be its dual

-~ - A*
bundle and let TiM be the wvarious tensor bundles formed from TM and T M.

Hereafter, TM, T M and TiM will be referred to as the internal tangent bundle,

internal cotangent bundle and internal tangent tensor bundles. Their elements

- are internal tangent vectors, internal tangent covectors and internal tangent

" tensors, which carry internal tangent indices.

To distinguish between internal and external indices, I will put a

caret (") over the internal indices and tilde (~) over external indices.

qs

One can also construct the mixed tensor bundles TﬁﬁM = TSMZ® %:M whose

elements are mixed tensors.

Up to this point, there is no justification for calling T™ a tangent
bundle. I now assume there is a vector bundle isomorphism, o ¢ ™ > ™,

hereafter called the soldering isomorphism. Thus, T™ is identical to ™ as

a vector bundle and hence deserves the name tangent bundle. However, I will

.distinguish between TM and TM by two additional structures: the class of

admissible frames and the choice of connection.
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The first dlstlngulshlng structure is-the class of admissible frames.
For TM, any frame, ey is adm1551ble. However, for TM, the only admissible
frames, ug, are those which are "compatible™ with the group G.  The

definition of a G-compatible frame must be made separately for each G. It

is chosen so that at each p01nt of M, the set of G- compatlble frames is
homeomorphlc to R (G), the image under the representatlon RT of the group G.
This is a restrlctlon iff RT(G) #GL(4, R) (Tables I1I.1 and II,3 1list the
class of compatlble frames for each group G. ) The bundle of G-compatible
frames is then a prlnc1pal,RT(G}bundle which is £he image under RT of the

original principal G-bundle, P, to which TM was associated.

-~ . * .
Let ea be the basis for T M dual to e& and let v be the basis for

Py
~

AR . o o o3 -
TM dual to us . Varlous tensor products of e&, 87, u&.and v provide bases

~ A

for the various mixed tensor bundles quM- e.g. 1f Y e TllM then
B 8

~

_— &MYA o -
P /] A eu ®8" @ uY & v .

The second structure which distinguishes between ™ and TM is the
choice of connection. I assume there is a metric on TM so that the
Christoffel commection (metric-compatible, torsion~free) defines a co-

% -
variant derivative, V , on TM, T M and TgM. The Christoffel symbols,

-

{a§§} , are defined by
Ve?e~ = { E;}e&. - 1)

In general, the Christoffel connection 1-form,

~oc=&“§ |
W { BY}B s (2)

takes its values in £GL(4,R), the Lie algebra of GL(4,R). However, if e
o

~

is an orthonormal frame, then aaé takes its wvalues in e£0(3,l,R), the Lie

algebra of 0(3,1,R).
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I assume there is a connection on the abstract principal G-pundle, P,
The connection on P induces a covariant derivative, V, on its associated

- A aAk ~
G-vector bundles, including T, T M and TEM. Its connection coefficients,

-

[
I e~, are defined by
Y

A

- .
Ve?{rl.lg =T B_Y ua . - (3)

- The connection l-form,

A S W@
takes its valueslin LG, the Lie algebra of the gauge group G. (Table IT.5
lists £G for each G in Tables II.2 and II.4). |

| The covariant derivatives, V on TgM and V on iiM, extend to a co-
variant derivative, V, on ngM by demanding that V be Liebnizian. Thus

~ A

for example, if ¢ ¢ T%%M, then

N JR - N I
Vebpgm W) ¥Uad vigls - Ut v

$ &n 4 &%
Flaebps-Tavgsn | (5)

Notice that the differentiating direction (X in wa) always belongs to TM.
This is true of all covariant derivatives, regardless of the gauge group or

whether the vector bundle, in this case ™, TM or'T%EM, is in any sense re-

lated to the tangenf bundle.
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Throughout the rest of this section I discuss the soldering isomorphism,

o, in more detail. First notice that ¢ is actually the mixed tensor
o B

o=o§ea®v:TM+TM. o - (6)

Tne inverse soldering isomorphism is the tensor

ot = (o h up @ M-, (7)

-
. . -1.8 o : 3 .
wnose components, {o )ga , are the matrix inverse of g » . The same

B

' S B AN . -
tensors, o and ¢ ', provide isomorphisms between the dual spaces:

-~ ~

_ o B * AR ’
c—créea.t&v : TM>TM, . (8)
~1 -1 §~, X o, at * 7
o] 7—(0' )Q‘UB@e t TM=-TM, (9)

Just as the metric, g, and its inverse, g =, are used to convert con-

travariant indices into covariant indices and vice versa, sco the soldering

isomorphism, o, and its inverse, o =, are used to convert internal indices

-~

, . . o
into external indices and vice versa. Thus the external vector, X , and

~

1-form, A&, are related to the internal wvector, XB, and 1-form, AE’ by

the formulas

&  a B _ . -1.8
X—céX, Aa—(c)aAB,
) (10)
g -1 B .a - S
X—(c)&x, AB GBA.

In particular, the external metric, g&g , 1s converted into gn intermnal

rwatric,

e = 2 EA OV (11)
g lof 5 o ; guB

Tor some of the groups, G, the definition of G-compatible frames requires

21 internal metric on %M, I assume that g?@ is that metric. In other words,
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I assume that the isomorphism, 0o, is actually an isometry between TM with

the metric g§§ and T™ with the metric g -Equation (11) guarantees that

aB°

‘the following diagram commutes:

T,

[0 3 S
*» —

In other words, raising and lowering of indices commutes with inter-

nalizing and externalizing of indices. Equation (11) also gives a formula
for the components of U-l:

-1.8 _ . N .

Lo ) 5" %3 %48 8 o=" . _ (12)

It should be noticed that this two tangent space formalism could easily

be generallzed to include. bimetric theories. of gravity by simply not assuming

that ¢ is an isometry. Then the choice of metric would be a third structure

distinguishing between TM and,fM.

. “ AT
Given the G-compatible bases ua and v* .on T™ and T M, the soldering

: : %
isomorphism, o, defines associated G-compatible bases on ™ and T M:

e; = c(u&), 6& = cnl(ya). - (13)

. . . -1 .
In associated bases the isomorphisms, ¢ and o , are the tensors

~ ~

g =e @V I 1. us ® 6% . : (14)
o o .

with components

O—‘:E:E'B\ ’ (O)a=5& B | - -(15)
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Jus£ as orthonormal frames make it easier to raise and lower indices,
asso;iated frames make it easier to internalize and externalize indices,
especially when listing components of tensors.

UﬁleésRT(G) = GL(A,R), not every basis on T is G-compatible. At
tines one may w1sh to use a non—G-compatlble basis such as a coordinate basis.

For future reference, notice that if the 1somorph15m, 6, and an associated

G-compatible basis, ea, are each expanded in a coordihate basis, 35 = B/Bx ,

B OV , | - . (16)

e~.= c‘ua) = g . 9 , - an

then their components are numerically equal.

Finally, I discuss the covariant derivative of g:

~ ~ £ ~

~ ~ o A_u‘_.v PN
\7’:f oz = e~(0 )+ { }0 i r a5 o o ‘ (18)

In associated G-compatible bases,

-~ -~ ~ ~

a_ Mt F o P X A — Y ) -
V;"g‘{ } I‘BY AsY (19)

Thus the covariant derivative of ¢ is the negative of the defect tensor. This

fact may also be derived invariantly by noticing that there are actually two

connections on TM, namely V and ¢ ° V ° U_l. The difference between these
is the defect tensor. Thus,
& g & 18 &-
noere U = g & Va [#) ~
55 % YI( ) u]
& -1.8 . B8 & ~-1.8 B

L]

TN == o) @
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Therefore
_)\-"".” - _ v~ N . ) .
. g B (20)

One says that o preserves the connection or that the connection is

g—compatible if for all X ¢ T™M and all ¢ ¢ TM,

Ve low) = o Vg ¥ _ (21)

~or equivalently,

0= VXU == A{(X). (22)

Thus the comnection is o-compatible iff the defect tensor vanishes so that

R . — -1 .
the two connections, V and o ¢ V ¢ ¢ » coincide,
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"3, Coﬁparison ﬁith.Single Tangent Space Formalism in Index‘Notation
and Cartan Differential form Notation
Except for the Eoldering isomorphism, equations in index notation
ir the two tangent space formalism are id;antical in appearance with equations
in index notation with a single tangent spacé. The difference is oné of
philosophﬁ in that the séme_s?mbols are interpreted differently. ‘For example
in either notation the Bianchi identity for the-curvature,

R?SYE , of the full comnection, I'", , can be written in three ways:

BY
_ _aBys Al B sk I '
0= pRgs * A Rgvs Mo Rayed @)
G838, . f S | .
0 £ (Vg‘R GY(S + 22 ?’é-RvKG ) | {2)
_ _aBYyS all ' f .
0 = VE_R L D (3)

 Equation (1) has all Christoffel covariant derivatives: (2) has all full
 cova;iant derivatives; and (3) has mixed covariané derivatives.  In the
standard index notation, one would usually establish a convention that all
covariant derivatives are either Christoffel or full and then drop the
tildas from (1) or the carets from (2) respectively. Howeﬁer one could
also use (3) and regard the tildas and carets merely as a notational short-
hand for remembering which indices a¥e corrected with the Christoffel con-
nection and which with the full connection.
Yotice how much simpler equation (3) appears than equations (1) and (2).

Zhe sams sort of simplification occurs using mixed covariant derivatives in
* .

, . o :
the Bianchi identity for the torsion, Va3 in the Noether conservation

laws of energy-momentum and angular-momentum (Section III.5);
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and in the field equations of certain‘theofies of gravity with an independent
connection (Section V.3d ). Why do these eduations look simpler using mixed
covariant deriﬁatives? Why are some indices cprrected with the full connec-
tion and some with the Christbffel connection?

Compare equation (3) with the Bianchi identity for a YangéMills field'

in curved-spacetime:
0= g i @)

Here FABYG is the gauge curvature written as a matrix in some representation
of the internal symmetry gauge group. Notice that the spacetime indices in
(4) all have Christoffel corrections and correspond to the spacetime indices

in (3) which have Christoffel corrections. Similarly, the internal indices

in (4) correspond to the spacetime indices in (3) which are corrected with

- full connections.

Furthermore, if one examines the derivations of the conservation laws
and of the field equations, one recognizes that the Christoffel corrections
always arise through an.integration'by pérts, an operétion intimately re-
lated té the tangent bundle. The other indices merely go along for the ride.

In fact, Stokes' theorem (specifically the divergence theorem) only works for

" partial derivatives and Christoffel covariant derivatives.

These arguments_seem to imply thgt there are two types of spacetime
indi;es: External spacetime indices are corrected with the Christoffel
connection and describe directions in spacetime. TInternal spacetime indices
aré corrected with the full connection, describe components.of'most’fields,

and are more analogous to the indices of a gauge theory of an internal symmetry.
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- However, indiceé are merely ;abels for_the basis vectors, and with only
one tangent space, nothing can distinguish between the internal basis and
the éxternal basis. Eitﬁér they coincide or one can be expanded in térms of

fe other. Consequently, the philosophy behind the standard index notation
has difficulty explaining why equation (3) ié simpler than (1) or (25.

On the other hand, the two tangeﬁt space fqrmalism gives a géometric
explanation: there are two kinds of indiges because-they'label bases living

in two different spaces, albeit that the two spaces are isomorphic.

In addition to the change in philosophy,rthé two tangent space formalism

adds a new computational tool te the standard index notation, namely the

soldering isomorphism o. For example, in order to derive equation (1) from

equation (3) with one tangént space, one writes the full connection as

v =% 340

By BY gy ° , )

" and then computes the mixed covariant derivative:

»

ool . au Uk K g
Vg R s aB R vy s +.F kg & vy s r vB R KY$
_ 4K ALl (K U
{ YB} R vk§ { GB}ﬁ VYK
= VE ﬁi-l o lu ﬁ.K - J\K ﬁu .

On the other hand, in the two tangent space formalism, one writes the
curvature as

S _ -1l B af | BN

. , . . -1
writas the covariant derivatives of ¢ and ¢ as

R (N

ot
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DR SR - ®

and then computes the mixed covariant derivative by Leibniz's rule:

A

AU 10, 6 4T -1.1 B gt
vz R 573 [VB(g )=los R 573 + (@ D) ¥[VE G G]R 57
_lﬁ 6 J\~
o T o5 Vg R

o, -ln P AT T sk R T
@77 750 Raga * M Ragr ~ Vg Ry

The computation is not any simpler but gives a more intuitive understanding

of internalizing and externalizing of indices.
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The Cartan differential form notation is specifically designed to handle

an independent connection on a single tangent space. For example, if

M =;6L_wu o A oY A g

v vRy$ ) ! )

is a TiM valued -3-form, then its exterior covariant derivative is the TiM

valued 4-form,

op' =@t e’ Ay -0 At T @0)

o, | | - (11)

is the connection 1-form of the full connection. In terms of mixed covariant

derivatives.

8

Mool ghay 0% A of A oY
6 (qu vB?S) 6 A8 AB AB . (12)

AY

Dy

Notice that the "visible" tensor indices ( p and v ) are corrected with the
full connection in both equations (10) and (12), while the "invisible" form
indices {8, vy and 5)Iremain uncorrécted in equation (10) and are corrected
with the Christoffel comnection in equation (12). 1In fact, in a coordinate
basis, the antisymmetfization on g, B, vyand § cancels all the Christoffel
symbols in equétion (12). Setting -

[V M o 1 u o B Y 8
8" = *(§ "y = = g~ A A
v Ny ( v &) 7 8, M By 6 8 g, (13)

equation (12) becomes

% = u o | |
D S ‘Vu S N n . | (14)



o

124

Here the Christoffel correction occurs in a divergence.

As exemplified by equations (12)‘and (14), the Cartan notafion is most
useful in two situations: (a) tﬁe differentiating index is antisymmetrized
with all the Christoffel corrected indices, and (b) the Christoffel corrected
indices are antisymmetrized and then the differentiating index is contracted

with one of them. ILuckily, the mixed covariant derivatives appearing in the

Bianchi identities, conservation laws and most field equations occur in one

of these two situations. So the Cartan notation is a useful formalism.

However, I know of no simple way in which a mixed covariant derivative, such
as Va Su%B , can be expressed in Cartan notation.
So far I have only discussed the Cartan notation in the context of a

single tangent space. It can be easily generalized toc two tangent spaces in

essentially the same way it is generalized to handle gauge symmetries. For

_example,_if

B
i

'.-J

B
it

_1 BY B .Y _
¥ =2 By 8- A0, (15)

is an internal symmetry vector, internal tangent l-form, external tangent

vector valued 2-form, then its exterior covariant derivative is

B Y B Y B CV Ak BV ., ~V B K
D ~ - d -~ + A A ~ — -~ A -~ + w ~ A -~ 6
{7 A v 4 MV 5 w s Vo tus Ay R (16)
1 B v o B Y '
= = (V. A A A
7 (g vng)e a0 a6, (17)

~ -~

A . . -~ .
where w ﬁ is the internal tangent connection 1~form, wK§ is the external
. B . . :
tangent connection l1-form, and A c is the internal symmetry connection l-form

written as & matrix in the same representatioh as y. Notice that the wvisible
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indices'(B, ﬁ and v) can have any type of corrections, while the invisible
indices (3 and ¥) always have Christoffel corrections.
What happens when an invisible index is made visible? With a single

téngeqi sﬁace, this is accomplished with an %nsertion operator. Thué if
'w‘-“% w“g o aeY , - (18)

t?en

. I a9

As a visible index, v is automatically corrected with a full connection in
covariant derivatives. With two tangent spaces, there are two insertion

operators. Thus if

p_oi1 @ B : : :
= = oo, A
L & AU | ‘ (20)
then
DI
"--;) P Y W 8, (21)
and by convention
TR n_ i Y
e P AP P ¥ &5 gl . | (_22)

'Each has the corresponding correction in covarilant derivatives.

The Cartan notation with two tangent spaces becomes identical in

appearance with the Cartan notation with a single tangent space if all visible

indices are internal (whether tangent or gauge) and all insertioms are made

in internal directions.
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4. . Minimal Coupling: Which Indices are Which?

In this section, I discuss the question, "Which tangent indices

Fa

are intérnalvand which are external?” 1Imn one sense, there is no content
in this guestion, since the soldering isomorphism can be used to convert
between internal and external tangent indices. There is soméwhat more
content when constructing covariant derivatives, since one must decide

- whether to correct each index with the Christoffel connection or with the
full connection. Even .then, one can convert between the two types 6f co-—
variant derivatives by adding correction terms using the defect tensot.
The question only really becomes significant when one is constructing the
matter Lagrangian (or matter field equatioms).

The following discussiqn of minimal coupling continues the discussion

of the matter Lagramgian in Section ITI.1, and the discussion of the full

Lagrangian in Section II.5. The procedure for minimally coupling the matter

P

R - Lagrangian to the gravitational field is ahélogous to the procedure fof
minimally coupling the source Lagrangian to the gauge field as specified
-by equation (II.1.30).

Recall that the full Lagrangian may be decomposed as in Section II.5:

= t
L(lfJ,g,B,T,A) - LG(gsesr) + LM(dbA) + LI(IP,g,B,T‘:A), (l)
where
LM(IPsA) =,L(w,8°835ab30,A5 + _ﬁ—cz A, (2)
o - 8WL '
LG(gsesr) '=L(0,g,8,1“,0) = LC S ‘ , (3)
1(0,2° ,6% ,0,0) = - —S_p 41, (4)
’caB’ B> ; 2 ‘o .

(ﬁ_: E 8aL
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Here,.g;B is any constant value of the metrie appropriate to the special
relativistic limit with spacetime symmetry group, Glg'the cosmological
constant is A which satisfies
fic _ - o . .
- 2 A - LG(gGB’6 b’o) H ) i (5)

8nL

ang LC is 'the constant term in the #matter lagrangian satisfying’

LG = LM(O,O). o . - (6)
The matter Lagfangién may then be decomposed as-in Section II.1:

where
LA(A) = LM(O,A) - Lo - | : (9

For the purpoées of discussing minimal coupling to the gravitgtional
field, T assume that (1) the matter Lagrangian is itself minimally coupled
to the gauge fields, and (2) the gauge Lagrangian is miniﬁally constructed.
Thus the interacting source Lagrangian may be obtained from the (global
gauge theory)-source Lagrangian by-replacing all partial derivatives, 9,

by .gauge covariant derivatives, %w:
L@, 50, .., 0 ™) + 1w, ey, 0™y, 4, s, 8™

= 1., bu,..., Ty, | o (10)
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Further, the gauge Lagrangian is only a function of the gaﬂge curvature,

¥, and its gauge covariant derivatives:
: 2 2
LA(A,aA,...,a(n)A) = LA(F,VF,...,V(P)F). (11)

Consequently, the total matter Lagrangian can be written as

a(m)w,A,aA,...,a

L, (4,80, .0, N

2 2 _ . 2 2
LA(F,VF,...,V(P)F) + Ls(w,vw,...,v(m)

¥) + L. (12)

Note that % is covariant_under gauge transformations of the group, G2,
but not under internal tangent frame transformation of the group, Gl’
nor under general external tangent frame transformations.

I_fifst discuss minimal coupling to gravity for a metric theory with
the spacetime symmetry group, Gl? chosen as 0(3,1,R), SL{(2,C) or one'of
their subgroups. In these cases the admissible frames, eaa, are ortho-

normal and the components of the metric ga , and its special relativistic

B

: limit,'g;B, are both the Minkowski metric:

-]

Bug = Bup T Tup T diag(s,—ﬁ,-s,vs)- (13)

Using the usual one tangent space formalism, the full Lagrangian, I in (1)

is said to be minimally coupled to the gravitational fiéld if the inter-
acting matter Lagrangian, LM + Li, may be obtained from the (special re-

lativistic) matter Lagrangian, LM in (12), by the two step prescription:

2
(i} replace all gauge covariant derivatives, V, by spacetime and gauge co-

variant derivatives, V; and then (ii) convert all coordinate indices into

R . a _ .
orthonormal indices by contracting with eaa or 6 s Thus LM + L% is
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required to be related to LM by
L (b, A) + LI ,1,6,T;4)
= 1,(0[F1,8[VF], ..., JRAREIN
+ 1 (8001, BIV], .., 017 4])
+ L, . _ | (14)

c

Here, if T is any temsor with‘some coordinafe and some orthonormal in-
dices, §[T] denotes the same tensor with all orthonormal indices. In
the two tangenﬁ space formalism the prescription for minimal coupling is
the same except that all coordinate indices are regarded as éxternal,
all orthonormal indices are regarded as internal, and the frames eua and
1.0

e s . a. - . =1,
g 2re replaced by the soldering isomorphism 9% and its inverse (¢ ™) at

601

0f course, for a metric theory it does not matter whether one converts

the external indices into internal indices before or after taking co-

variant derivatives. So step (ii) of the prescription is equivalent to:

(ii') write everything in (internal) orthonormal indices in the first

place. Also in a metric theory the defigition of F in ferms of A can be
written using either partial derivatives or spacetime covariant derivatives
since the conneétion has no torsion. So step (i) of the prescription is
equivalent to: (i') replace all paftial derivatives, 3, by spacetime co-
variant derivatives, %, This automafically converts gauge cévariant de—
rivatives, %, into spacetime and gauge covariant derivativeé, V. 'T prefer
step (i)‘an& (ii) ra£her than (i') and (ii') because (i) and (ii) gen-
eralize to the non-metric theories while (i') and (ii') do not.

I next discuss minimal coupling for a metric-Cartan connection theory.

Tﬁus the spacetime symmetry group, Gl’ is still 0(3,1,R), SL(2,C) or one

-
’
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, ‘ ' — - a i '
of their subgroups; the admissible frames, e, » are gtill orthonormal;

and the components of the metric, guB’ and its special relativistic limit,

g ,, are still the Minﬁbwski-metric.as in (13). 1In the two tangent space

o
-
ade

“Zormalism, the full Lagrangian, L in (1), is said to be minimally coupled

to the gravitational field if the interacting matter Lagrangian, LM + L,
may be obtained from the (special relativistic) matter Lagrangian, LM in

(12), by the two step prescription: (i) replace a11 gauge covariant de-

.rivatives, Y, by internal spacetime, external spacetime and gauge covariant

derivatives, V; and then (ii) convert all external tangent indices into
. . . y P - a . -1,0 rt
internal tangent indices by contracting with Gu or (o 7) 2 Thus LM + LI

is required to be related to LM by
. ¥ - 1
L (¥,4) + LI, 0,07, T,4)

= LA(G_l[F], c"l[VF],...,c"l[v(PjF])

P A '3 I A O CARA B

+'LC . | ) (15)

where Gnl[T]'is the tensor T with all internal tangent indices. Notice
that this'prescription is identical to that for a metric theory, but it
is now crucial that (1) any external tangept indices are convertéd te in-
ternzl tangent indices after performing covariant derivatives and.(Z) the
partiél derivatives in F are not converted into Cartan covariant derivatives
since that would destroy fhe gauée covariance of F.

This brings us back to the original question in this section, "Which
rangent indices are internal or external?" Before performing the covariant
éerivatives in (15) one must answer this question for each of the tangent

infices on ¥, F and V. It is obvious that there is no absolute answer to
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this quéstion, but I regard the followiﬁg answer as standard: All
differentiating indices are external. This iﬂcludes the differentiating
indices on V, A and F. (Thus.one could say that the partial derivatives
iﬁ the definition of F are replaced by Christoffel covariant derivatives.)
All tangent indices on the source field, ¢, are internal.

Tﬁis standard choice between internal and external tangent indices
agrees with that made by Hehl, von der Heyde, Kerlick and Nester [1976]
in their review of the ECSK theory. It alsq agrees with the choice made
by the Cartan differential form notation in that the visible-iﬁdices
correspond to the internal tangent indices and are corrected using the
full connection while the invisible indices correspond to the external
tangent indices and are corrected using the Christoffel conﬁection.

An important non-standard source field is the spin 3/2 field, wA;,

of supergravity for which the spinor indéx, A, is regarded as internal-

- while the 1-form index, a, is regarded as external. (Of course, it is

~ possible that wAé should not be interpreted as a source field but rather

as a piece of the spacétime connettion; f, with the spacetime symmetry
group,'Gl, enlarged to include the supersymmetry transformations.) In
the Cartan form notation, the spin 3/2 field is deseribed as the spinor

valued 1-form, wA = ¢Aa dx?.

This brings ub an important advantage of

the two tangent space formalism over the Cartan form notation. In the

two tangent space formalism it is péssible to consider non—s;andard source
fieids in which the external indices are not antisymmetrized as they

must be in a differential form.

See_aléo the paper byrHojman;'Rosenbaum, Ryan and Shepley [1978] in

which they consider a non-standard minimal coupling of the gauge Lagrangian.
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1 finally discuss minimal coupling for a metric-connection theory
in which the spacetime symmetry group, G13,i5 larger than 0(3,1,R) or
SL(2,C); Then the admissible frames, eaa, need not be orthonmormal, and
the components of the metrig, gas, need not be .the Minkowski metric.

Further, gaB need not even be constant. To obtain the special. re-

o

B’ for each patch

“ which are related by a constant Gl transformation on the overlap of each

pair of patches.
Notice that equations (1,2, 4-12), depend implicitly on the choice of
the constant matrix, g;B. I now make that dependence explicit, rewriting

equations (1) and (12) as

—1 s : "l ) 1 —l <
L(¥,g,0 ,T,A) = L.(g,0 ~,T) + LM(w,A,gaB) + L(b,8,0 LTLA,8 0)s
(16)

(n)

(m) o
LM(ID,BII),...,B 1, A,8A,...,9 A’gaﬁ)-

2

_ 2(p). e 2 2 (m)
= L,(F,VF,...,¥ ?,gae) + LW, W, ., ¥

bogg) * Lo D)

In the two tangent space formalism, the full Lagrangian, L in (16),

is said to be minimally coupled to the gravitational field if the inter-

acting matter Lagrangian, LH 4+ L!, may be obtained from the (special

relativistic) matter Lagrangian, LM_in (17), by the three step prescription:
2 ! .
(i) replace all gauge covariant derivatives, V, by internal spacetime, ex-

ternal spacetime and gauge covariant derivatives, V; then {ii) convert all

external tangent indices into intermal tangent indices by contracting with

a 1.2 o ' 4 , :
5, of (¢ ™) a;and {iii) replace the constant matrix, g;B,‘by the non-

- constant metric, gaB' Thus LM + Li is required to be related to LM by
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e TR LI
- ;A(u—l['F], c._l[VF],...,. c"liv(p)F],gaB)
+ Ls(o_l[¢], 'o_l[vq;],.._., oﬁl[v(m)wl, gas)
S : | - ae

The standard choice between internal and external tangent indices is the

same as that made in the case of a metric-Cartan comnection theory.




s

134

5. "Noether's Theorem and Conservation Laws
a. General Formalism

In this section, I discuss Noether's theorem in the con-

text of the two tangent space formalism. The fact that the matter

Lagrangian, LM’ is a scalar under coordinate transformations leads to

the conservation of energy-momentum. The fact that LM is a scalar under

‘internal tangent frame transformations leads to the conservation of

angular-momentum and possibly dilation current and hypermomentum. Unlike

previous sections, I here use Latin indices to denote a coordinate basis

_ on the external tangentwbundle,wand_Gteekmindicesﬁtofdenotejanuarbitrary

Pt

G-compatible basis on the internal tangent bundle. The carets over Greek

indices and tildes over Latin indices are not written.

In this section, I ignore any gauge fields and assume the interacting

matter Lagranglan,

o T T N e LI @

is a scalar function of only

(a) the internal components of the source fields, w(X)

(b)
(c)

(d)

(e) -

' . . . . a
-the internal tangent connection coefficients, T

,» (Here (X) denotes

any collection of internal tangent indices,spinor indices, gauge indices,
any/or indices to count off different fields, which fransform according

to some representation, R , of the group, G.)

v

their coordinate partial derivatives, Baw(x),

» (to conmstruct co-~

Ba

variant derivatives in coordinate directions,)

. , . X . -1 a
the components of the inverse s¢ldering isomorphism, (o )'a’ (to

cenvert external coordinate indices into internal indices,) and

the internal components of the metric, g (to contract in&ices).

op’
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Notice that other variables may be constructed slgebraically from
these, In pérticular, the soldering isomorphism, caa, and the inverse

metric, gaB, are the solutioﬁs of the linear equations,
52 (E-l)ab -2 : _ : | | 3)
; | o - | (3)
‘the external dompoqents of the metriq‘gre

SR S s S Gl LI - oW
and the determinant~of the external metric is

g = det g, = (det g ) [det @ hH it )

The matter action may be written inlseverai forms,
S, = J L n = JL ﬁfr déx = J L dax | (6)
M M M & M :
where the volume eiement is |
N

’ | . (7)

and the matter Lagrangian density is

Ly =1y ", | ®)
- (X) (X) Lo -1,
- I:EM{'Q) 2 aaw 1] I‘ Bas (U ) a’ gas] L X (9)

The Lagrangian density may be varied in two ways. First, varying

‘equation (8), using the Leibniz rule, yields

L, = /T SL, + L 875 = /TF (6L, + 5 L, 6% g, 1 . (10)
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Second, varying equation (9), using the chain rule, yields

3 3 : Ll
sL = 8 sg +—£M— s hH® ¢ s
of -l.a a o Ba
3o ) 8T
- a Ra

3 .
S s SN 3
311) (A) a

) (D

Since variations commute with. coordinate partial derivatives, equatiom (11)

may be rewritten as

- 3£M aﬁM U—l o &ﬂM o

8L, = —— &g , + — §(o 7)Y+ 8T
ih BguB B 3 (o l)a a ap® Ba
a Ba
3 _ 3 9
o M ;,&_:._'aM_O5 0w ® 4 o “%«.(X) s ® |
oy aaaw aaa¢

a2 |

S . . L - s
I now introduce the symmetric energy-momentum tensor, T 6, the

. a . .
canonical energy-momentum tensor, ta , the -canonical spin tensor,

.SBa

.’ and the matter Euler-Lagrange tensor, L, ., which are defined

(%
by the formulas,

8 34
-5 /:-g %‘ Tc{B = ﬁji = Bf{ . (13)
B oB
5L a«_:lg1 :
= . & . oM _ "
- s };:8— t{x - -"l a4 "1 o ? (14)
§{o ) a (o ) a
8 3 :
s oz lgha_ & - g , - (15) -
227 «a 57 a7
RBa Ra
. SJ& al 3L
= - a R < S . 16
MElm T L® a® T w9
a

Throughout the rest of this section, I use the spacelike convention for

the signature of the metrie, Thus, 5 = -1,
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Also recall an identity for Christoffel covariant derivatives:
5,08 v = /g v, v, San

Using equation (8) and

. 8L o _ ' )
v - M D 6w(X),- o (18) -
33 b ' ' :

equation (17) becomés

acd . sL .
M - @ o= M |
Al L® T = Va[—*w W 9
33 P _ da ¥ .
a a:
Note: For coordinate transformations, Gw(x) = - eb3b¢(x) ~ is not
. AL
a tensor under frame transformations. Consequently, .V ( LM (X))

2 g5 & o

: i e o a .
is not really a covariant derivative. Instead it is a shorthand notation

for

Ay By | Ay
(X)] } [ (x)} a )
V| =S Sy =3 |~ Sy + {5 7= sy . (20)
a (xX) . a X) ba (x)

{aaaw 3&3& 38b¢

Using (13), (14), (15), (16), and (19), equatien (12)Abecomes

o
Ba

' ]

(X LM' (X) .

+L(X)Gzp + va[am——a UJ(X) 83 }:] . (21)
b

a B a

n - { 1 _aB a.,, —1 L
Mﬁ:/:g[zr 88,4 + £, 8(0 % + 5 8" Fer

Equating expressions (10) and (21) for &ﬁM yields,

1 ab
Sy * 3 Ly & dg

L1 g8
b~ 3T

a 1
GEQB + t& 8§Co ) + > 8 8T

oL

+ L ® . v, M@ 2

x) ¥
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In the following subsecfions, I specialize equation (22) to co;r&inate
variations and certain classes of frame variations. However, I first
make two corments.

(1) The derivation so fér, and most of that which follows,‘does noé
require that LM is actually the matter Lagrangian. It merely requires thaf
LM is a sﬁalar function of the var;ables shown in equation (1). Tf LM is
only a term in the matter lLagrangian, then TuB, taa, SBaa‘and.L<X) are the
corresponding contributions to the symmetric energy-momentum tensor, the
canonical energy-momentum tensor, the canonical spin tensor and the matter

Euler-Lagrange tensor respectively. If LM is the whole matter Lagrangian,

then the Euler-Lagrange equations for the matter fields are

L = o. (23)

" However, I will continue to carry the L(X) terms in order to keep the

derivation general.

(2) 1In definitions (13) through (16) it is important to specify
which variables are held fixed during the variationms, or equivalently,
on which variables the Lagrangian depeﬁds. Definitions (13) through (16)
assume the functional dependence shown in équation {1). I here discuss
three other choices. In each example, £ﬁ denotes the matter Lagrangian

density regarded as a function of the new variables.
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(a) 1If one regards thé external metric, g ab” as the independent

a b

varlable 1nstead of the 1nterna1 metric, g B gab o] B,_then
sLt
aih = gyt P, €24)
Eab ' : .
but
&L ﬁ - a B a -
= & -1 "), - (25)
-1l.0 o o B
(@ ™) a.

(b) 1If one considers the defect tensor, AGBY’ as the indepen-

dent variable in place of the comnection,

o _ , -1y .o ~1.a b b c _
T ga = (c ) s A By + (¢ ) b ( Bac 2 + { ac}c B), (26)
then
'
Y B a . -1y _ ,
GA“ E 5 S (@), > 27
By

but'&ﬁé/égas and 64%/6(0_1)u; are significantly different from

: -l.a . ; -
Séhlégas and Sihlﬁ(a ) a because'the Lagrangian is now a function of

~-1l.0
aag 8 and ab(o ) a° In particular

&ﬁ'
Gg B

) | cqab b b
E P - %-c(“a o° RAACHEE L P

b [

(28) -

appears on the right hand side of the Einstein equation when the metric

and defect are considered as the independent variables. The quantity in

square brackets in (28) is called the metric emergy-momentum tensor, TGB.

(¢} A change of variables can even produce non-tensorial quantities.

For example, if TQBY is used in place of ¢ = (0_1)Y ¢ » then

Ba a By
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8L ¥
=1 B8 a -1y

o = —g 2 S o CU ) a [y - ) (29)
8T )

BY

but

&L ! _

M Va3 . a 1 .8 a v
— =Yg (£ 4+ T 5 r . : 30
S(G—l)aa g ( o 2 v Ba ) ( )

ey a Ba =1/2  anises Lo
'The quantities t =, S v and (-8) : G,BMIG(G ) , cannot all be tensors.

I don't fully understand why, but from experience, taa and SBYa turn out

to be tensorial. 1I consider this one of the best reasons for using the

. o
mixed components of the connection, T , rather than the frame components,

Ba
o
FBY'

I now go back to comsidering the variables shown in equation (1).
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b. Conservation Laws with a GLQ(A,R)—Internal Tangent

Frame Bundle

The GL,(4,R) — internal tangent frame bundle, GL, (M),
consists of all frames at all points df spacetime. TIts connection is
pernitted to be completely general, ﬁon—metricfcompatible and/or non-

(x) '

; . X e s s ae
torsion-free. The matter fields, ¢ » cannot have any spinor indices

because there are no spinor representations of GL, (4,R). Consequently, I

" consider such a theory undesirable, but I compﬁte its conservation laws

for completeness. The results are also applicable to GL(A}R) which has the
same Lie algebra as CLQ(A,R).

Substitute into equation (22), the GL, (4,R) - internal tangent frame

variétions of LM’ gab’ gaB’ (c_l)da, raSa; and w(X) as listed in Table TI,10:
; U1 S A Y a .o , =18 1.8a _.a
0 =5 T[= A 8.4=A, gw}_+ £, [)\. g0 71+ 58" - 6l
\ .
o L BN ® (D "y 6L B D
ot e RS TV Y @ PR T !
a R
| (31)
or
_ . {_ B B B8\ (X) ()
0 =3"g =T +¢ +L@)%@a) oy ¢

. 'aLM :
B | (X) (Y)
+ v, aaaw(X) Rw(E 0t) 1) P :l

L ' .

a 1.8a M B (X} () :

VR B [ -3 5 o t 55 ¢(X) R¢(E a) (Y} v } - GD
a _
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; . s o
Since this equation must be true at all points for all choices of A

8 the
coefficients of lus and Vakus may bé separately equated to zero:
B .. B B (XD ()
T, =t, *t Ly R¢(E o @ ¥
oy
B (X (Y2
e, WEd ot %)
a
3
Ba_, By (M
S o« - 2 23 ¢(X) R¢(E 0[) 1) P . | (34)
a

Equation (34) is an alternate definition of the canonical spin tensor.

It may be compared with the original definition, equation (15) or equivalently,

8a=231'M

S (35)
o a2
o,
' Equating (34) and (35) yields,
oy, By B LX) (¥
, = R (E” ) P . : (36)
ar pp p& ¥ et (DT
Ba a )

Recall from equation (1) that I did not originally assume that the matter
Lagrangian, LM’ was minimally coupled. However, equation (36) permits one
_ to prove that LM is in fact minimally coupled; i.e. L, depends on Baw(x)

and on r* only‘through the combination,

Ba
(X) (x> o g X M
v = + T R (E , 7
which is the covariant derivative.
Troof: Make a change of variables in from 3 w(X) and T”_ to
B Ly a " Ba
hie .
Taﬁ_“) and PdBa; i.e. define a new function,
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x) _ @ (X) (¥)
r Ra v(E_ ) (Y) v ?

o -1,.a
SN Cl a,AguB] . D)
Use chain rule and equation (36) to compute

Ly Ty Sy ® oy

= - R (E R +— =0
arasa aa 1p(X) ] (Y) -

Consequently, Lﬁ is independent of TaBa and

(X) X) Lo 1.0
LM[ ¥ ’ 3 ¥ T, Tgos (0 ™) ;> 84
= Tt ) -l.a .
LM[ ARPEE A PN A P ] . (40)
is minimally coupled. Notice again that this proof does not require that
LM is actually the matter Lagrangian. It merely requires that LM is a
scalar function of the variables shown in equation (l)f

The canonical spin tensor, eduation (34), may be divided into

(1) an antisymmetric part, called the canonical spin (or intrimnsic) angular

momentum tensor,

a (x) (Y)
=—= R /
Slea] T, ,® W% @V D)
Y
a
where ¢ o = EB& - EuB; (Note that equation (41) is the usual definitiom

of the canonical spin tengor used in particle physics.) and

(2) a symmetric part, which T will call the canonical intrinsic (or_spin)

hypermomentum tensor,
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BLM :

a .l N®

Sy T, 4@ i) @V “2)
R

where T, = B, + &

Ba Ba af *

The intrinsic hypermomentum tensor may be further divided into

(1) a trace part, called the canonical intrinsic (or spin) dilation current,

Loy
s* ¥ =p —=—r R LD
o aaaw(x)

® O
o v (43)

where ] = Eau; and

(2} a tracefree part, called the tracefree canonical intrinsic (or spin)

hypermomentum tensor,

9
a 1 vya _tm 1 ® W
S(Ba) T4 a8 5 Y 59 ¢(X) R¢(T8a 7 8 1 (Y) LS
a

(44)
The canonical spin temsor, eQuation (34), may be substituted into"

equation (33), yielding,

B a B x) (7)
2> o o Tlm rp(E Y v (45)

The antisymmetric part is

1 Y.a _ Y a : 4 (X) (¥}
0=3 (gBY Va® By Ya%'8 2 Flap] T Lixy Rylge) @ ¥

a o ay
(46)
or :
_ a . Y a (%) ()
0= oS80 T2 Frapr T TaBype? Sep Tl Bl Ty VT
@) -

Notice that I have not set Vg = 0, since I am investigating the GL.(4,R)-
internal tangent frame bundle with a GL,{(4,R)-connection., When the matter

field equatiomns, L( = 0, are satisfied, (See the discussion preceding

X)
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equation (23).) equation (47) becomes the conservation law for angular

momentum,

_ : a ’ Y a
. 0= ?aS[Bd] + 2 F[aBl + ( VagY[u)S 8] (48)

The'symmetfic part of equation (45),

=1 Y a Y a
2 ?38 S 2 (gBY VaS o + guy Vas B )
' NS ¢ (Y) _
ttyg Tty T LigyE xp( ) o Vs (49)
or
= a - Y a
2T " oSy t2trg ~ ¢ VagY(u) g o)
x> (Y)
Loy B Ty VT - (50)

may be regarded as an alternate definition of the symmetric energy-momentum
tensor, TaB’ which generalizes the Belinfante-Rosenfeld symmetrization pro-
cedure. When the matter field equations, L(X) = 0, are satisfied, equation

(50) may be regarded as the conmservation law for hypermomentum,

. a - _ Y &
0= SGa) Y20 "2 Ts ™ (V8% p) - (1)
In particular the trace of equatioﬁ (49) is-
o o a o (x) (Y )
2T = VS T+2¢t +2 L(X)Rw(l) ) P (52)

When the matter field equations are satisfied, this becomes the conservation

law for dilation current,

+2t =27, : (53)
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Now substitute into equation (22), the coordinate variation of

~-1l.0 o ) - :
LM, ga‘b’, goaB’ (o) 2’ T ga’ and P as listed in Table 1II,9:

1 cd, b b b
- BbLM +5 Ly 8 [.—s abgcd - ( 9_€ )gbd - ( 34 )gcb]

= 5 100" 38,00 + £ 21”3 (TH - 3,60 H% ]
S CE RO ST IS N S s
OLy ey oy My b, (%)
+ Ba m [— b. ] + { ca} m [-¢ abt,l) ]
¢ (54)

(See the note preceding equation (20).) Since equation (54) must be true

at all points for all choicés of sb, the coefficients of -Eb and —‘r}aeb may

be separately equated:

LMg Bg
1 Ba o ().

1.0 a -l.a
= = + = r
2 T Bbgug t Bb(c ) a + 2 S o ab ga (X) 9 IJJ

9 i~ 2 '
“+ 3 [-LM——-— 3 w(X’ ] + {2 3 —LM———— 8 w(X) R (55)
a ca b

X) b (x)
59_¥ 25 ¥
9
a __a,-lo 1 .pa o Ly (X)
LMGb-tq (c)b+23ur‘8b+-———aa¢(x) 8b¢
2 (56)
Substituting equation (34) for SS(;L into (56) yields
BLH .
a _ a _ &9 o g8 () (Y)
& Ty oy S [ P A Ty RE D Ty ¥
. a
8L, )
- a S x)
= g ~- v ’ .
Ly ¢y 2.0 @ Y (57
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which is the definition of the canonical energy-momentum tensor used in
pérticle physies.

Equation (56) may now be substituted into equation (55) to produce
_ﬁ 1l: cd '
by T I Iw B P8

o (ﬁ)

_1 aBV ) a -l.0 1 .Ba
=3 T abgaB -+ ta Sb(o ) a + 5 S o Bbr ta + L(X) Bbw
' .a . a ,-la l_fB a .o
+83[II__MGb-.ta CHD R er]

a c c, - 1 .
P Iy 8y m e, @) =58 T Tl

Since {aba} = %—ng.Bbgcd » the LM terms cancel leéving
0~ %—T&S %fus t Ly % o &
+c [ab(cfl)“a,- aa(o'l.)ab 1 - (c'l)“b ,[aataa + 2 %
+ % SB(;l '[BbI'aBa - aar"‘sb] - % r“sb [ o, sE’ma + {aca}S_BGCJ .

Now convert all partial derivatives into covariant derivatives.

. '=l aB : Y Y
0=27 They + T 8y ™ Tgp 8yy

xX) _ oo B () (¥)
tligy e Pep BpE ) Ty v ]

“he e (o hE e

a "'10, " - . ‘15
+ t, [Vb(c ) a Va(o ) b r &b s sa (o ™)

]

+7 Py (58)
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Equation (III1,3.7) implies .

~1.a -la _ ,-la ¢ ¢ _ A0
vb(U ) a va(U ) b @ co\ ab A ba) Q ba
(59)
Hence (58) becomes
_ . Lo a, 1l .Baao a .o
0= (G)bvatu+28a Bba+ta Qba
1,08 (%)
+ > T ngOtB + L(X) Vbqj
o g8 _ 1 Ba _, B _ B (X (Y)
Pl T T3NSy T Tk B{EY Ty v
The coefficient of I" gb vanishes by virtue of equation (45) leaving
-L.a a 1 B a aq a o
t = =
(U‘)bvaa ZScx RBba+ta Qba
o 1 B .
o $3 g g P . G0

When the matter field equations, L( = 0, are satisfied this becomes the

X)

conservation law for energy-momentum,

-l.o a _ 1 B a a .o 1 B
(U)bvatot _ZSGRBba-!-tO'. Qba+2T ngOLB’
. (61)
or
a _ 1 838 so § 1,08 b
vatY =3 ) .. R By +t, Q v + 5 T o Y bgm8 , (62
or
a _ 1 daac d __d,,e ’
V.t =35, apa T (EL T TR L, (63)
or
( a o 8 _1 .86 § o § .o 1 .08 b
o0, Ut 75 Rpgtty Cogtt, Mg +5T0 o ngaﬁ
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I have written the comservation law in four formg, Equations (61) and
(62) have mixed covariant derivatives; equation (63) has all external
Caristoffel covariant derivatives; while.equation (64) has all internal full

covariant derivatives.

¢. Conservation Laws with an 0, (3,1;R)~Internal Tangent Frame

Bundle or an SL(2,C)-Spinor Frame Bundle

‘The 0;(3,1,Rf—internal tangent frame bundle,AOU(M,g),
consists of all orignted, time oriented, orthonormal frames at all points’
of spacetime. .Its connection must be an 00(3,1,R)—connection; i.e. the
connection coefficients, FaBa’ are written in orthonormal internal frames
and taﬁé theif valueé in =£0°(3,1,R). Hence, PaBa is antisymmetric in a
and B and the connection is metric-compatible, élthough not necessarily
torsion-free; i.e, a Cartan connection,

Ba.

The antisymmetry of Toga. 1mPlies § 2 {s also antisymmetric

in o and B. A transformation between orthonormal frames leaves the_metric

invariant. Hence, under infinitesimal variations, Aa is antisymmetric.

w(X)

B

The matter fields, » may have spinor indices, but in that case there

rust be 'a spinor frame bundle to which 0,(M,g) is associated. In this
_subsection I take that spinor frame bundle to be the SL(2,C)-spinor frame

bundle, SL in(M), which consists of all orthonormal spinor frames at all

Sp

points ¢f spacetime. In this case, ¢ » 1s actually an SL{(2,C)-connection.

Ba
The results are also applicable to 0(3.1,R), SO0(3,1,R), OT(3,1,R),
05(3,1,R), SL'(2,0), SL+(2,C), SLT(Z,C); and SLS(Z,C) which all have the
same Lie algebra as SL(2,C) and 0,(3,1,R). Unlike the CL0(4,R) case, there
is ho hypermomentum, S(Ba)a’ and hence ﬁo dilation current, Saua.

Correspondingly there are no comservation laws for hypermomentum or dilation

current.
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Substitute into equation (22), the 0,(3,1,R)~internal tangent frame

o

. : ~1.a
{(cr SL{2,C)-spinor frame) varlations of LM, 8.7 & (e ™) 5 T

69

ap’ Ra’

and -/, as listed in Tables II.10 and IT.1l:

2 + V

oy, 1.0 & (D
—ry 3 R, ) AU
59 w(X) 2 (Y)

(65)

or

2
(X) ® , 1 Ly <X) (¥)

™
)
=
z].'*

' o i 1M (X) (1)
Tva*e{'zsu 233¢(X) w( a2 ¥ l (66)

. Since this equation must be true at all points for all antisymmetric choices

of AqB s, the coefficients of 2% and v A% may be separately antisymmetrized

3] a B
and equated to zero:

- (X} (M
0=2 %081 "l RO Ty ¥
3Ly
M 10:9)] (Y)
+ 9, " ¢(X) Rw(c ) 0 ' s : 67
a
BLM :
a _ x) ¢ _
%60 T 3, e O T v (68)

s L a .
In deriving these equations recall that SBa and Osa are already anti-
symretric.
As in the GL, (4,R) case, equation (68) is an alternate definition of

the canonical spin (angular momentum) tengor. (Compare (68) with (34) and

(417.) Equating (68) with the original definition, equation (15) or (35),
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yields,
Sy p My, B LX) (¥) R
o 2, @ BOY o (©3)
1%, ] |

As in the GL.(4,R) case, this implies'that'LM is minimally coupleds i.e.

) and on ' only through the covariant derivative

3
LM depends on a¢ Ba

® _ oL, 1 B @
v =y @° ) ’ (79

2 T ga By @ Y

Equation (68) may be substituted into equation (67) yielding,

0= vs %4

A x) (Y)
a Bog Z't[aB] + L(X) Rxp )

( @ ¥

GBG - (71)

When the matter field equations, L( = (), are satisfied, this becomes

X)

the conservation law for angular momentum,

0= vs, %+

aSse T2 g (72) -

Now substitute into equation (22), the coordinate variations of

X)

-1.a [+ . .
LM, gab’ guB’ (o ) a’ T ga’ and as listed in Table II.9:

b. 1 cd b b b
? Bl 5 LM &8 [~ s 4 (Bca 284 (Bde g )

b -1 b, -1
AN N CR AN S TCR L
1B8a b, a _,. b.o b, ®
+ 5 S o [-e abr 8a (Bae 3yr Bb] + LCX)[-e Bbw ]
8Ly b (X a . Oy b ‘ (x)
+ 3 - 3, ¢ +{° 1 ———= - 8¢ ).
a (%) b ca ) b
29 y 20
(73)
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Equate the coefficients of —eb and of —-Bagb s

: 1 cd
dprm T 7l & gy

__a -l.a 1 Ba o (X)
N Gl R R Y
BLM oL
(X) a M (X)
+ 9 | ————— 8.¥ + {7} ——= 3y s (74)
a[ 55 (%) b ] ca’ oo II'J(X) b
a c
3L (X)
a _ _a,-1la 1.8 a.a M
I"Mab_ta(d)b-*.Zsaer+Baw(X)ab¢' - 5)
a

Using equation (68) for SBaa, equation (75) becomes

g
a . a B (X)
' S ' S B A (76)
. P
a
which is again the definition of the canonical energy-momentum tensor used

in particle physics. Substituting (75) into (74) and cancelling the LM

terms leaves,

0 = £, By 7%, = 2 O 1= 6T Lo gt e
+2 sf 21 2T ga - éaraeb] %r“sb [ aassaa . 2 3sf o
+ Ly yu® - | 77
Convert to covariant derivatives and—use equation (59).
0= - (c:_l)“b va'1 £, +% ssma ii“eba + taa Q‘”ba ¥ Ly VY ()
- F%Bbttaﬁ + %— vassaa + %L(X) Rw(cr?a) ) 1) w(Y)]'.

(78)
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Since TGSb’ SBGa and 08Ot are antisymmetric-in a and 8, the coefficient
of ?asb vanishes by virtue of equation (71), leaving
—1 ’ . -~ :
(@ H® v ? Lghage LEge v,y

b aa 2 " o. Bba a Q ba + L(X) b
| ‘ (79)

When the matter field equations, L( = 0, are .satisfied, this becomes the

X)

conservation law for energy-momentum,

-l.a L a ' o L B aao | a o © s
(0 vE, =58,k gba Tt Qpar (80)
or
a 1 B S ~a § a '
t = :
Va. ¥ 2 S o B'YG + tOL Q 'YS 2 (81)
or
a 1l .dazc d .c '
t = = .
va b 2 S c R_dba_+ tc A dp ’ (82)
or .
a 6§ _ 1.8 6 50 § .o § ,a ,
GGVatY “z_sa R pvs T & QY6+tY e (83)

Equations (80) and (81) use mixed covariant derivatives; equation (82) uses
external Christoffel covariant derivatives; while equation (83) uses

internal full covariant derivatives.




